Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Med Port ; 36(11): 753-764, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37924314

RESUMEN

Acute porphyrias are a group of rare genetic metabolic disorders, caused by a defect in one of the enzymes involved in the heme biosynthesis, which results in an abnormally high accumulation of toxic intermediates. Acute porphyrias are characterized by potentially life-threatening attacks and, for some patients, by chronic manifestations that negatively impact daily functioning and quality of life. Clinical manifestations include a nonspecific set of gastrointestinal, neuropsychiatric, and/or cutaneous symptoms. Effective diagnostic methods are widely available, but due to their clinical heterogeneity and non-specificity, many years often elapse from symptom onset to diagnosis of acute porphyrias, delaying the treatment and increasing morbidity. Therefore, increased awareness of acute porphyrias among healthcare professionals is paramount to reducing disease burden. Treatment of acute porphyrias is centered on eliminating the potential precipitants, symptomatic treatment, and suppressing the hepatic heme pathway, through the administration of hemin or givosiran. Moreover, properly monitoring patients with acute porphyrias and their relatives is fundamental to preventing acute attacks, hospitalization, and long-term complications. Considering this, a multidisciplinary panel elaborated a consensus paper, aiming to provide guidance for an efficient and timely diagnosis of acute porphyrias, and evidence-based recommendations for treating and monitoring patients and their families in Portugal. To this end, all authors exhaustively reviewed and discussed the current scientific evidence on acute porphyrias available in the literature, between November 2022 and May 2023.


Asunto(s)
Porfiria Intermitente Aguda , Humanos , Porfiria Intermitente Aguda/diagnóstico , Porfiria Intermitente Aguda/genética , Porfiria Intermitente Aguda/terapia , Portugal , Consenso , Calidad de Vida , Hemo/metabolismo , Derivación y Consulta
2.
J Gene Med ; 24(4): e3410, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35032067

RESUMEN

BACKGROUND: Mucopolysaccharidosis type I (MPS I) is an inherited disease caused by deficiency of the enzyme alpha-l-iduronidase (IDUA). MPS I affects several tissues, including the brain, leading to cognitive impairment in the severe form of the disease. Currently available treatments do not reach the brain. Therefore, in this study, we performed nasal administration (NA) of liposomal complexes carrying two plasmids encoding for the CRISPR/Cas9 system and for the IDUA gene targeting the ROSA26 locus, aiming at brain delivery in MPS I mice. METHODS: Liposomes were prepared by microfluidization, and the plasmids were complexed to the formulations by adsorption. Physicochemical characterization of the formulations and complexes, in vitro permeation, and mucoadhesion in porcine nasal mucosa (PNM) were assessed. We performed NA repeatedly for 30 days in young MPS I mice, which were euthanized at 6 months of age after performing behavioral tasks, and biochemical and molecular aspects were evaluated. RESULTS: Monodisperse mucoadhesive complexes around 110 nm, which are able to efficiently permeate the PNM. In animals, the treatment led to a modest increase in IDUA activity in the lung, heart, and brain areas, with reduction of glycosaminoglycan (GAG) levels in serum, urine, tissues, and brain cortex. Furthermore, treated mice showed improvement in behavioral tests, suggesting prevention of the cognitive damage. CONCLUSION: Nonviral gene editing performed through nasal route represents a potential therapeutic alternative for the somatic and neurologic symptoms of MPS I and possibly for other neurological disorders.


Asunto(s)
Mucopolisacaridosis I , Animales , Encéfalo/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica , Iduronidasa/genética , Iduronidasa/metabolismo , Ratones , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/terapia , Plásmidos
3.
Ann Med ; 51(2): 141-148, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30990103

RESUMEN

Background: Hermansky-Pudlak syndrome (HPS) is a rare inherited platelet disorder characterized by bleeding diathesis, oculocutaneous albinism (OCA) and a myriad of often-serious clinical complications. Methods: We established the clinical and laboratory phenotype and genotype of six unrelated pedigrees comprising ten patients with clinical suspicion of HPS; including platelet aggregation, flow cytometry, platelet dense granule content, electron microscopy and high-throughput sequencing (HTS). Results: The clinical presentation showed significant heterogeneity and no clear phenotype-genotype correlations. HTS revealed two known and three novel disease-causing variants. The Spanish patients carried a homozygous p.Pro685Leufs17* deletion (n = 2) in HPS4, or the novel p.Arg822* homozygous variant (n = 1) in HPS3. In the case of two Turkish sisters, a novel missense homozygous HPS4 variant (p.Leu91Pro) was found. In two Portuguese families, genetic studies confirmed a previously reported nonsense variant (p.Gln103*) in DTNBP1 in three patients and a novel duplication (p.Leu22Argfs*33) in HPS6 in two unrelated patients. Conclusions: Our findings expand the mutational spectrum of HPS, which may help in investigating phenotype-genotype relationships and assist genetic counselling for affected individuals. This approach is a proof of principle that HTS can be considered and used in the first-line diagnosis of patients with biological and clinical manifestations suggestive of HPS. Key messages We established the relationships between the clinical and laboratory phenotype and genotype of six unrelated pedigrees comprising ten patients with clinical suspicion of HPS. Molecular analysis is useful in confirming the diagnosis and may offer some prognostic information that will aid in optimizing monitoring and surveillance for early detection of end-organ damage. This approach is a proof of principle that HTS can be considered and used in the first-line diagnosis of patients with biological and clinical manifestations suggestive of HPS.


Asunto(s)
Síndrome de Hermanski-Pudlak/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Adolescente , Adulto , Niño , Femenino , Variación Genética , Síndrome de Hermanski-Pudlak/diagnóstico , Síndrome de Hermanski-Pudlak/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...